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A tinite element method using different trial and test spaces is introduced for solving the 
neutron transport equation in spherical geometry. It is shown that the widely used discrete 
ordinates method can also be thought of as such a finite element technique, in which integrals 
appearing in the difference equations are replaced by one-point Gauss quadrature formulas 
(midpoint rule). Comparison of accuracy between the new method and the discrete ordinates 
method is discussed, and numerical examples are given to illustrate the greater accuracy of the 
new technique. 0 1986 Academic Press, Inc. 

INTRODUCTION 

The neutron transport equation in spherical geometry can be written in the form 

O<r<R,,,,,, -l<p<l, 

where $ = Il/(r, p, t) represents the unknown neutron flux at radius r, angle cos- ‘p, 
and time t. Various discretizations have been used to solve Eq. (l), one of the most 
popular being the method of discrete ordinates [ 11. Galerkin finite element 
approximations-using, for example, continuous piecewise bilinear functions as 
trial and test functions-have also been considered [2], but these have the dis- 
advantage of yielding a large, implicit system of linear equations that must be 
solved at each time step. Finite element techniques using discontinuous 
approximation functions have recently been studied [3], but these also appear to 
require significantly more work per grid point than the discrete ordinates method. 

In this paper we consider a Petrov-Galerkin finite element approximation (one 
in which the trial space and test space are different), and illustrate numerically that 
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it gives the optimal order of accuracy without requiring the solution of a large, 
implicit linear system. (A preliminary account of some of this work appears in 
Ref. [4].) It is shown that the discrete ordinates method results if the integrals 
appearing in the finite element equations are replaced by one-point Gauss 
quadrature (midpoint rule) approximations. The effect of such a replacement on the 
accuracy of the computed solution is also discussed. 

THE METHOD 

Given grid points { (ri, ,uk), j= l,..., NR, k = l,..., NMU} the finite element 1 
approximation $(r, p, t) for Eq. (1) will be taken to be a continuous piecewise 
bilinear function in r and p for which the following relations hold: 

(2) 

(b) 

r* dr S, 
j= I,..., NR- 1, = 
p= -1. 

The solution of Eq. (1) is uniquely determined by initial conditions 

and boundary conditions 
ICl(r, CL, 0) given (3) 

(4 ti(Rmax> PL, 2) given for p d 0, 2 > 0, 
(4) 

@I VW, K t) = t40, --CL, t) for p>O, t>O. 

Likewise, these conditions (or conditions involving the piecewise bilinear inter- 
polants of the given functions) will be enforced upon the approximate solution 
$(r, p, t). We have chosen a reflecting boundary condition (Eq. (4b)) because it has 
been used extensively in various discrete ordinates formulations [cf. 1 ], It is not the 
only possible choice, or necessarily the best, but a discussion of this issue is beyond 
the scope of this paper. 

In Eqs. (2), all of the integrals involving r and ~1 can be evaluated analytically, 
since $ is simply a bilinear function of these variables. Thus, the only 
approximation in the finite element method is introduced by the bilinear represen- 
tation within each zone. The use of functions linear in p guarantees, in particular, 
that the approximation approaches the diffusion limit correctly. 
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In the terminology of finite elements, then, $(r, p, t) is that function in T, s 
{continuous, piecewise bilinear functions ), for which the relations 

(a) 

(b) 

(5) 

<f;g)L=J-oR”ax r* drf(r, -1)&r, -l), 

hold, for all functions x in T2 E {piecewise constants (in zones)> u (piecewise con- 
stants (in intervals along p= - 1)). Since T1 and T, are different, this is called a 
Petrov-Galerkin finite element approximation. 

To compute the approximate solution determined by (2b(4), we first express the 
bilinear function $ in the form 

(4 " 

1 1 

4+, PY t) = (Ar)(Ap) CIClj,k(t)(rj+ 1 - rMk+ 1 -PI 

(b) $(r, - 1, t)=$ E$j+ r,l(t)(r-rj) + $j,,(t)(rj+ 1 -r)ll 

rj<r6rj,,,p= -1, 

where $,,,(t) = $(r,, I+, t), P=j,j+l,q=k,k+l, 

Arsrj+,-rj, A~=!‘k+l-& 

Substituting this expression into (2) and evaluating necessary derivatives, we obtain 
a system of ordinary dlyferential equations for the unknown flux values $jk(t) at the 
grid points (rj, p(k). These ordinary differential equations can be solved uiing any of 
several standard difference methods. For our program, we used a simple centered 
difference scheme in time (Crank-Nicholson). This is almost equivalent (as we shall 
see later) to using the same Petrov-Galerkin finite element technique for the time 
variable as well. 
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To compute the approximate solution 1,6 at time t”+ I, then, we must compute the 
derivatives dgj,Jdt at time t”+ ‘I2 and then set 

IGi,*(t”+‘)=~jL(tn)+(At)~l=r+l12, 
At - t”+ ’ - t”. 

We compute the derivatives (d$,Jdt)( t” + ‘I2 ), starting along the line p = - 1. Given 
the values of JNR,,(t), we can determine 
be used to calculate (d$,,- l,l/dt)(t”+‘/2 

(d$,,,/dt)(t”+ ‘12), and then Eq. (2b) can 
). In this way, Eq. (2b) is used to march 

down the line ,U = - 1, from rNR = R,,, to y1 = 0. Now, given the value of the 
approximate solution (or its time derivative) at three corners of a zone, Eq. (2a) 
can be used to determine the value at the fourth corner. Thus, knowing 
(d$,&dt)(P+ I’*), k = l,..., (NMU+ 1)/2 and (d$j,l/dt)(t”“‘2), j= l,..., NR, we 
can use (2a) to compute (dt+bNRp ,,,/dt)(t”+ ‘I2 ). With this, we can then evaluate the 
derivative at (rNR-, , p3) or (r NR _ 2, ,n2), etc. When solutions have been calculated 
at all grid points with p < 0, we then apply the boundary condition (4b) to obtain 
the solution at r = 0 for ,u > 0. We then use Eq. (2a) to march back through the 
grid, determining solution values for positive ~1. Thus the order in which solutions 
are obtained is equivalent to that used in the discrete ordinates method. The num- 
ber of numerical operations for a given grid is equivalent to that required by the 
discrete ordinates method. 

The difference equations for carrying out this process can be written in the form 

where 

ej,k 
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dj,k = - dr 2V(r2)l (aJ2+~(l -(~*h)(rh +g(~)~~ 

trll = 'I+ 13+ 2rj, 2rj+ 1 + rj 
W2= 3 

(r2)1=r~+l+r,;Irj+r~, 
(r212 = 

rj+1+2rj+1rj+3rj2 

6 ’ 

(r*h = 
3rj+,+2rj+,rj+rf 

6 ’ 

(pi /k+I +2pk 
bL)*= 

2pk+l +pk 
1 ’ 3 3 9 

(~)~=~[~+‘r2~(r,P+1~2)(r-rj)dr, 

((7)2=~J~+‘r’X (r, t”+“2)(rj+l -r)dr, 

for - 1 < p < 0, and a similar formula gives @j;:,l,+ 1 in terms of !8$:\), !&+ I), 
and !@ + ‘) when p is greater than zero. Along the line p = - 1, the equations are J+ t,k 7 
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where 
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Sj,l =& /“’ r*S(r, - 1, t”+ ‘i2) dr, 
‘1 

1 
J- (r2h 3 gj.1 =z Yj,l + dt 

hj,l =i 6j,1 +A (r2J2, 

Yj,l = - $ (r2h + 2 (D)I, 

bj,, =z (r*), +$ (C)2. 

The integrals involving C (r, t” + ‘12) can be approximated (or, in many cases, 
evaluated exactly), using weighted Gauss quadrature formulae. We used the one- 
point formula, 

yt I I,. c r* (r, t”+“2 )(r - rj) drxdr(r2), C (?, t”+ ‘12)(i- ri), 
I 

(r, t” + ‘I2 )(rj+l -r)dr~dr(r*), C (i, t”+“2)(ri+l-i), (9) 

1 
3 

r=z r;+ 1 - r:’ 
rj+L-r,” ( J, 4 ’ 

which is exact provided C is constant throughout each zone. 
Likewise, the integrals involving the right-hand side function S are approximated 

using quadrature rules. The function S, however, depends on the solution Y. It is 
given by 



PETROV43ALERKINFEM 103 

where Sint(r, p, t) is a given internal source, TV represents a known fission source, 
and r,, and ri are known terms in the Legendre polynomial expansion of a scatter- 
ing source. 

In this paper we have invoked the Pl approximation; i.e., we have represented 
the scattering distribution with two terms in a Legendre expansion. Additional 
terms can be added as desired, in a manner analogous to that used in discrete 
ordinates codes. In the case of the finite element method, the integrals are just sums 
of integrals of simple polynomials over each zone, and are done analytically. 

To estimate the source term S at time t”+ ‘12, we linearly extrapolate the solution 
9 from times t”- ’ and t” to time t” + l’*. (On the first time step S is estimated using 
the initial value of 9.) Using this estimate, we then solve Eqs. (8) to determine an 
approximation for 9 at time t” + ‘. This is averaged with the known solution @ at 
time t”, to obtain a new approximation for 9 at time t”+ I’*. If this approximation 
is close enough to the previous estimate, then !@(r, ,u, t”+ ‘) is accepted as our 
approximate solution. Otherwise, the value of 8 at time t”+ ‘I2 is used to calculate 
an improved source term, and Eqs. (8) are solved again using this new right-hand 
side. This iteration is repeated until a converged result for the approximate solution 
@(r, ,u, t” + ’ ) is obtained. 

COMPARISON WITH THE DISCRETE ORDINATES METHOD 

The widely used discrete ordinates method for solving equation (1) results from 
writing the equation in conservative form 

1 iT!P p iY(r*P)+~d((l-p*) !P) 
ix+;“- & r ap +I !P=s, 

and then replacing all derivatives by difference approximations. In the most com- 
mon method, called diamond differencing [ 11, the derivatives are replaced by cen- 
tered differences, giving second-order accuracy. Making this replacement and 
integrating each side of Eq. (11) over a zone [rj, rj+,] x [pkc, P~+~], gives rise to 
the following difference equations: 

1 w, A fn+‘) - TV, ii, t”) (T)(Ar)(Ap) 
V At 

rj’+, !Rrj+l, Cc, t + 
” + I/*) - rj! P(rj, jj, t”+ ‘I*) _ 

Ar MN4 

+c (6 f ” + “2) P(F, ji, t “““)(~)(Ar)(Ap) 

= S(J, j, t”+ “‘)(~)(Ar)(Ap), (12) 
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where 
,-‘/+I+yI, p$:,1 3 ) +rj+lrj+rf 

2 

Ar = rj+, - rj, 

p/k+1 +pk 

2 ’ A/‘=&+,-pk. 

Equation (12) is strictly correct only for the case in which the “center” of each 
angular bin is taken to be the arithmetic mean of the boundaries. In the important 
case where Gauss-Legendre quadratures are used to represent the angles, the dis- 
crete angles are not at the zone centers. It will be shown below that the use of such 
sets greatly enhances the accuracy of the discrete ordinates method. This effect will 
be discussed and accounted for in the numerical examples. To show the analytic 
connection between the discrete ordinates and finite element methods, however, we 
will use the special form of discrete ordinates given above. 

Given the values of p(r,+ 1, fi, t”+‘/‘)(or ‘?(r,, fl, t"+"*) if p>O) and 
p(f, pk, t nf”2), Eq. (12) is solved for the value of p(?, ji, t*+"*), after making the 
substitutions 

!@,p, P+l)=2P((r,ji, tnfl’*)-P(F,ji, t”), 

p(rj, Pu, t n+‘/2)=2~(~,~,t”+‘/2)-~(~j+1,~,tn+1/2), (13) 

pt/(r,~k+l~ t”+ “2) = 2P(cy, p, tn+“*) - P(F, /L&, t”fl’2). 

These same relations are then used to obtain the values of p(rj, ji, t”+ ‘/*)(or 
P( rj + 1, ji, t" + ‘I2 ) if /A > 0) and !?(F, pk+, , tn+ ‘I*), and finally to obtain 
corresponding values at time t" + ‘. 

The difference equations for the finite element approximation result from assum- 
ing the solution Y to be bilinear in r and ~1 in each zone (so that, e.g., relations (13) 
hold), and then integrating each side of Eq. (1) or, equivalently, Eq. (11) to obtain 

+ r+’ r2 1 (r, t) dr @(r, P, t) & 

(14) 
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If the integrals in Eq. (14) are approximated using the midpoint rule, 

then the resulting difference equations, 

+ i#+ I !@rj+ I, L t) - rj p(rj, L t))(dp) 

= W, P, t)(F)(dr)(dp) (15) 

are seen to be exactly the same as those in (12), once the substitution (7) is made 
for a!?/&. Thus, the discrete ordinates method is equivalent to a modified finite 
elements method, in which integrals appearing in the difference equations have been 
replaced by one-point Gauss quadrature formulae. Again, we emphasize that com- 
parison of angular terms assumes that the discrete angles are at the midpoints of 
the angular zones, a condition that does not hold for the popular Gauss-Legendre 
quadrature. The effects of this are discussed further in the following section. 

The order of error in the midpoint rule approximation is the same as that in 
approximation of an arbitrary function by a piecewise bilinear function, i.e., 
0((h)* + (LIP)*). F or this reason, we might expect that the finite element 
approximation and the discrete ordinates approximation would have the same 
order of accuracy. Numerical experiments support this hypothesis. 

Both the diamond difference scheme and the finite element method can generate 
negative fluxes under appropriate conditions. In cases where negative fluxes cannot 
be tolerated, most discrete ordinates codes use a “negative flux fixup,” which 
generally involves the introduction of a first order scheme which forces positivity. 
Similar fixups can be used for the finite element method, using elements which will 
not go negative in those special cases. A discussion of these techniques, however, 
will be deferred to a later paper. 

While a detailed error analysis of the two methodes is beyond the scope of this 
paper, we can gain some insight into the relative performance of the two methods 
by considering the errors made in the various approximations. To this end we will 
consider a time-independent problem, since both methods use the same time dif- 
ferencing scheme, and we will assume that the right-hand side function S is known 
(independent of Y). In this case, then, the true solution Y(r, p) satisfies the 
equations 
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+ jr;+’ r2 c (r) jB*+’ Y(r, p) dp= j”’ r2 dr j”“” S(r, p) dp, 
Pk ‘1 Pk 

j = l,..., NR- 1, k= l,..., NMU- 1. (16) 

If we replace the function Y by a piecewise bilinear function, say its bilinear 
interpolant, then it can be shown using Taylor’s theorem that the integrals in (16) 
change by an amount that is less than or equal to 

+ (4~)~ k Ri,, max Ir,r -$ (Yk r))l 

+ WI4 & R,,, y $ ( Wufr, p)) . 

This expression gives an estimate of the amount by which the true solution Y fails 
to satisfy the linite element equations, as the finite element equations are derived by 
integrating a general piecewise bilinear function. 

In the discrete ordinates method, in addition to implicitly assuming a bilinear 
representation of the solution (as implied by relations (13)), we also use the follow- 
ing integral approximations: 

s abf(x)dxc(b-a)f (F), 

s If (x)x2dxxf (T) jbx2dx. 
a 
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The error in approximating the integrals in (16) with such formulas is bounded by 

+ higher order terms (18) 

Note that the error terms in (18) are similar to those in (17), except that the new 
terms involve first derivatives of Y or second derivatives of p!P and r Y. In some 
cases the errors committed in approximating the integrals tend to cancel those 
made in assuming a bilinear representation of the solution. In such cases the dis- 
crete ordinates method may achieve a fortuitously high level of accuracy, and, 
indeed, could outperform the finite element method, in which no such cancellation 
occurs. This phenomenon is illustrated in the numerical examples of the following 
section. In general, however, this cancellation cannot be expected, and the sum of 
the error terms in (17) and (18), or at least the larger of these terms, more 
accurately indicates the error in the discrete ordinates approximation. Thus, in 
general, we would expect somewhat greater accuracy from the finite elements 
approximation, and this also is illustrated in the examples that follow. 

NUMERICAL TESTS 

We have done a series of numerical experiments to verify these conclusions. The 
results of three test problems illustrate the magnitude of the errors introduced by 
the discrete ordinates approximations. For each test problem we present three sets 
of results: (1) variable radial zoning with fine angular zoning; (2) variable angular 
zoning, uniformly spaced in p, with very fine radial zoning; and (3) angular zoning 
based on Gauss-Legendre quadratures, with line radial zoning. In this last case, the 
discrete ordinates angles correspond to Gauss-Legendre quadrature and the finite 
element code uses a nonuniform angular grid for which the zone-averaged angles 
correspond closely to the Gauss-Legendre quadrature angles. 

In all three cases the results are presented as the log of the ratio of the calculated 
to the correct answers. This quantity is approximately equal to the fractional error 
in the calculation. 

The first test problem, shown in Fig. 1, is a small steady-state source at the center 
of an absorbing sphere which is two mean free paths thick. No scattering is present. 



108 GREENBAUM AND FERGUSON 
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FIG. 1. These curves give the log of the ratio of the calculated to the true leakage for the first test 
problem (shown in the insets). This quantity is approximately equal to the per cent error for a given 
mesh size. The source and absorber radii are given in cm, and the macroscopic total cross section ,?I, as 
defined in the text, is given in cm-‘. The source S is isotropic, and the materials are pure absorbers. The 
results for the discrete ordinates method and our finite element method are labelled S, and FEM, respec- 
tively. 
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FIG. 2. Results for the second test problem (shown in the insets). The notation is as described for 
Fig. 1. 
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FIG. 3. Results for the third test problem. The notation is as before, except that we now use the 
criticality, K, as a measure of accuracy. Also, the inner material is “lissile”, emitting 2.5 neutrons per 
collision (rf= 2.5), and the outer material is a pure isotropic scatterer (r0 = 1). 
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The leakage out of the sphere is taken as a figure of merit. The gain in accuracy of 
the finite element method over discrete ordinates, for a given number of radial or 
angular zones, is about a factor of 2. Both methods are improved by use of a 
Gauss-Legendre quadrature set, with the finite element method advantage reduced 
to 15-30% 

The second test problem is more challenging. It consists of a spherical source 
with radius 10 cm. embedded in a 20 cm absorber. The absorption cross sections 
are indicated in the figure caption. In this problem the flux varies by six orders of 
magnitude across the sphere. The finite element method shows gains in accuracy of 
about a factor of 3 for reasonable mesh sizes. Again, both methods improve with 
use of Gauss-Legendre quadratures in angle, with the finite element method advan- 
tage reduced to about 15-30%. 

The final test problem has quite different properties. The inner sphere consists of 
a “fissile” material which emits 2.5 neutrons per collision. The outer sphere is a pure 
isotropic scatterer (scattering cross section = total corss section). In this problem 
the flux distribution is relatively flat, and the conditions favor the diffusion 
approximation. The figure of merit for this problem is taken to be the criticality. 
The errors due to radial zone size are of opposite sign for the two methods, and the 
discrete ordinates error actually changes sign for crude zoning. The terms neglected 
in the discrete ordinates approximation apparently are opposite in sign to those 
terms neglected in assuming a bilinear solution, and tend to cancel. Thus it is 
possible to find cases in which the discrete ordinates approximation is more 
accurate than the finite element approximation. This is an exceptional situation, 
however, and cannot be expected to hold in the general case. In the angular zoning 
results, the finite element method shows little or no advantage over discrete 
ordinates for Gauss-Legendre quadratures. Since this test case has a diffusion-like 
solution over most of the volume, we would expect both methods to do well, since 
both go to the diffusion limit properly. 

To summarize, the test problems indicate that the advantage obtained for the 
new method is considerable for the radial approximations. For the angular mesh, 
using Gauss-Legendre quadrature for discrete ordinates, the advantage is smaller 
but still significant. 
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